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We review here the results of our investigations concerning chaotic atomic scat- 
tering in the presence of a laser field. Particular emphasis is put on the existence 
of classical stable resonance structures, induced by the intense laser field, which 
are embedded in the field-free continuum. We show that phase space structures 
in the vicinity of a resonance island play an important role in the chaotic 
scattering behavior and form the basis for a mechanism to enhance the lifetimes 
of the collisional partners. Quantum calculations, based on a wave packet 
propagation method, show that quantum solutions are strongly influenced by 
the classical phase space structures. More specifically, a wave packet is found to 
spread differently in the regular and chaotic regions; in the latter case it spreads 
exponentially with time until saturation occurs, defining the saturation time. We 
also investigate the h dependence of the spreading rates in both the regular and 
chaotic regimes. Calculations with an ensemble of classical trajectories are also 
presented to further illustrate the smoothing effects of varying h. 

KEY WORDS:  Laser-assisted atomic scattering; stabilized continuum; 
control of chaos; wave packet propagation; dressed molecular formation; 
correspondence principle. 

1. I N T R O D U C T I O N  

The classical-quantum correspondence for nonlinear systems is currently a 
very actively pursued area of research. (I) In particular, great attention has 
been devoted to the influence of classical phase space structures on quan- 
tum dynamics. Stable periodic orbits and surrounding quasiperiodic orbits 
provide dynamic barriers to quantum flow in addition to the usual static 
potential barriers, but tunneling through these dynamic barriers has very 

1Department of Physics and Atmospheric Science, Drexel University, Philadelphia, 
Pennsylvania 19104-9984. 

189 

0022-4715/92/0700-0189506.50/0 �9 1992 Plenum Publishing Corporation 



190 Lu e t  a/. 

different time characteristics from ordinary potential tunneling (which can 
be explained by the WKB approximation). This was noted by Davis and 
Heller in their studies of autonomous systems. (2) 

We review in Section 3 a classical control mechanism which we 
proposed earlier (3' 4) to stabilize atom-atom collisional partners under the 
influence of a laser field and enhance the formation of molecules. This is 
achieved by switching on the laser field at an appropriate time relative to 
the collisional process allowing the trapping of the scattering trajectories in 
the stable structures in the continuum. We will discuss the notion of laser- 
induced stabilization of the continuum in Section 2. 

The concept of dynamical barriers suggests the possibility of realizing 
the classical control mechanism of scattering events at the quantum level. 
The feasibility of the dynamical barriers serving to trap incoming wave 
packets is investigated here by studying the spreading rate and saturation 
time of arbitrary wave packets originating in regular and chaotic regions of 
phase space. This will be discussed in Section 4. 

The sensitive dependence of the classical scattering function on the 
initial conditions is somewhat smoothed out in our quantum results. In the 
last section we carry out a study of the average behavior of an ensemble 
of classical trajectories over a phase space distribution to provide further 
understanding of this smoothing effect. 

2. C L A S S I C A L  S T A B I L I Z E D  C O N T I N U U M  

We study laser-assisted diatomic collisions in which the two atoms 
interact via a Morse potential in the presence of a laser field. If we restrict 
ourselves to head-on collisions with the field also linearly polarized in the 
same direction, the problem becomes one-dimensional. Using dimen- 
sionless variables, (5) we can write the Hamiltonian as 

H = Ho + Hint (1) 

where Ho is the Hamiltonian describing the interaction of the two atoms 
using a Morse potential, leading to a dissociation threshold equal to 0.5 in 
scaled units, 

p2 p2 1 
H o = ~ - +  VM(X)=~+~ (1--e-X) 2 (2) 

Hint is the interaction term between the diatomic system and the laser field 
in the dipole approximation, 

Hi.t = --#(x) E(x) (3) 
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where #(x) is the dipole moment of the diatomic system and ~ the scaled 
time. The dipole mi)ment function is assumed to take the form (6) 

l l(x) = (x  + a ) e  (x+a)/b (4) 

where a and b are related to the zero and the width of #. We take a = b = 2 
in this paper. The functional form of the dipole moment resembles 
qualitatively the experimental and calculated results for hydrogen 
halides. (7) 

The laser field E(r) is a periodic function of time, and is characterized 
by a strength A and frequency (2 or the period T =  2~/g?. Two kinds of 
external fields will be considered: a sinusoidal field and a sequence of delta 
impulses. The former is a more realistic form, while the latter is used to 
derive analytic results. In the following subsections we will show that the 
occurrence of stabilization in part of the field-free continuum upon shining 
an intense laser field onto the two colliding atoms is a generic feature of 
these systems. 

2.1. S inusoidal  Field 

In the case of a continuous field we assume that the interaction term 
takes the form 

Q 
Hint = - A  ~-#(x) cos(f2v) (5) 

In the numerical experiment we integrate Hamilton's equations for the 
Hamiltonian defined in (1) and (5) by a Runge-Kutta routine of fourth 
order. Since the system is driven periodically, we use a stroboscopic 
representation to study the dynamics. A phase portrait with A = 15 and 
T =  0.3 is shown in Fig. 1. The field-free (if) (A = 0) separatrix between the 
bound and scattering motion, i.e., H0 = 0.5 curve, is also shown in the same 
figure by a dotted line. We observed that the phase portrait is dominated 
by a saddle point and its stable and unstable manifolds in the part of phase 
space for which the bound motion under the exposure of the laser field now 
lies outside the ff separatrix. 

To understand the observed features in phase space, we derive an 
effective potential in the high-frequency limit by separating the dynamics 
into rapidly and slowly varying parts(8); this allows us to average the effect 
of the rapidly varying part of the motion and produces the time average 
effective potential guiding the slow particle motion. For our system, this 
leads to the following effective potential: 

A2(d. 2 
V~ff(x) = VM(x ) + 16 \ d x /  (6) 
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Fig. 1. Stroboscopic section for sinusoidally driven atomic collision with field parameters 
A = 15 and T=0.3 .  The period-1 saddle point is located at (x, p ) =  (2.647856,0) and is 
indicated by a small circle. The dashed line denotes the homoclinic orbit or the effective 
potential. The dotted line shows the field-free (if) separatrix. 
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Fig, 2. The saddle location x,  as function of the field strength A according to the effective 
potential theory. The circles represent the period-1 saddle points as found by numerical 
search. 
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where VM is the Morse potential. The coordinate of a maximum for the 
effective potential x, is given by the nonzero root of the following equation: 

dVra , A 2 d# d2# _ 0 
dx *  2V- ('7) 

This maximum corresponds to a saddle point at (x,, Ps = 0). In Fig. 2 we 
plot xs as a function of the field strength A. 

We observe in Fig. 2 that the saddle point moves inward along the x 
axis and approaches 2 as A increases since (d#/dx)  2 peaks at x = a = 2. The 
separatrix between bound and unbound motion under the influence of the 
effective potential is the homoclinic orbit given by the equation 

p2 
Herf(x) =~-+ Vdr (x )=  Verr(Xs) (8) 

In Fig. 3 the homoclinic orbits of the effective potential are plotted for 
various A. As A increases, the enclosed phase space region is squeezed 
along the x axis and elongated along the p axis, leading to a portion of the 
enclosed region being outside the ff separatrix. This opens up the possibility 
that a part of the stable KAM zone extends into the continuum. Without 
the field the continuum is flatly unstable, but with the field on part of the 
continuum may become stable; this region becomes accessible through a 
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scattering process when the field is gradually switched on. We call the 
stable region outside the ff separatrix the stabilized continuum. 

We use an algorithm ~9) based on linearization around a trial orbit to 
find the saddle periodic orbits associated with the homoclinic orbits. In 
Fig. 2 the circles represent the results from the search. Since 
s .... ~1  is used, we indeed have good agreements 
between the effective potential theory and the numerical integration. 

The bulk features in Fig. 1 are well explained by the effective potential; 
for instance, the stable zone extending outside the ff separatrix is due to a 
deeper effective potential well than the ff well. Of course the driven system 
whose stable and unstable manifolds intersect transversely at homoclinic 
points is nonintegrable. These homoclinic tangles are responsible for the 
emerging chaotic behavior, since they imply the existence of a countably 
infinite number of periodic orbits. 

2.2. Impulsive Field 

Here we replace the driving term by a series of 6-functions (Dirac 
comb) by requiring the average of the driving term over a half period to 
be the same as that of the series of 6-functions over one period, leading to 

n ~ + o o  

Hi,t=--Akt(x ) ~ 6( , -nT)  (9) 
n ~  o o  

where T = 2~/Q is the period of the driving field. 
Integrating Hamilton's equations of motion, we get an area-preserving 

map M which is piecewise analytical depending on whether the energy 
E=Ho of the Morse oscillator is below or above the dissociation 
threshold. ~4) If we synchronize the map on the time just prior to the 
impulse, the map M is naturally decomposed into an impulse K followed 
by a free evolution F under the Morse potential for one period T of the 
external field, namely 

\ P ~ + I /  P~ 

The impulsive term K is obtained by solving Hamilton's equations 
from just before an impulse to just after; it changes the momentum 
impulsively and keeps x fixed. The free-evolution term F propagates the 
trajectory for a period T ahead along the constant-energy E curve, 

E 
,,1, 

where co = co(E) is the frequency of the Morse oscillator. 
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The stabilized continuum in this case comes from a period-one 
saddle-center bifurcation. (1~ As A increases, a period-three saddle-center 
bifurcation occurs. Then the period-three center undergoes a period- 
doubling cascade while the period-three saddle moves toward the stable 
period-one center, leading to a stable resonance island with a triangular 
shape. Upon further increasing A the period-one center orbit can collide 
with the period-three saddle orbit to form a periodic orbit associated with 
a 3:1 resonance311) The period-one center and the period-three saddle then 
reemerge after the collision, leading again to a triangular stable island but 
with reversed orientation. The resonance island is outside the ff separatrix, 
therefore lying in the continuum, as shown in Fig. 4 for A = 2e 2 and 
T =  5.271719. 

An expansion for the forcing function d~/dx up to quadratic terms at 
x = a leads to a valid local approximation to K since dWdx peaks at x = a. 
Further, if we replace F by a rotation R, which is equivalent to replacing 
the Morse potential by a harmonic oscillator potential, the map (10) is 
locally reduced to a H6non map. (4) Linking numbers (m) for periodic orbits 
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Fig. 4, Stroboscopic map (in which x and p are recorded prior to each impulse) showing the 
KAM curves, which form a resonant island in the vicinity of the period-one orbit located at 
( x , p ) = ( 2 ,  1) with energy 0.873823 when the field parameters are A=14.77811 and 
T =  5.271719. The "dots" are computed by a multiple iterations of the map for an ensemble 
of initial conditions near the period-one orbit. The "triangles" are the stroboscopic map of a 

particular scattering trajectory. 
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can be calculated, which provides "selection rules" for periodic orbits to 
interact (creation or annihilation) and confirms the observed bifurcation 
sequence. 

3. CONTROLLING CHAOTIC SCATTERING 

Chaotic scattering in the presence of an intense laser field can be 
understood in terms of the stable manifolds of the unstable periodic orbits, 
extended into the asymptotic region. The intersection of these manifolds 
with the initial condition line is fractal, thus nondifferentiable with respect 
to the initial conditions, so that small differences in the initial conditions 
can lead to totally different scattering results. 

A part of the ff continuum becomes stable because of the presence of 
the intense field. Then an immediate application of our finding follows: 
field-dressed molecules can be formed by switching on the field when 
the trajectories get into the stable islands. This is possible since those 
stable islands lie in the field-free continuum and are thus accessible via a 
scattering process before the field is fully turned on. 

In this sense the chaotic scattering can be controlled by bringing the 
trajectories into the stable resonance region. Two examples (3' 4) are shown 
in Fig. 5, one for the continuous field and another for the impulsive field. 

4. Q U A N T U M  DYNAMICS 

To study the quantum dynamics of this problem, we use a direct 
approach in solving the Schr6dinger equation numerically, We use a 
standard implicit numerical method, ~12) summarized by the following 
formula: 

~,+~ 1 - i � 8 9  7 t" (12) 
l+ i �89  

expressing the time evolution over a small time step. This method main- 
tains unitarity; we use a three-point formula for the second differential 
operator for efficiency. We have also compared the solution obtained 
by this approach to the solution obtained by the Felt-Fleck spectral 
method (13) and found good agreement. For both methods we have 
introduced an absorbing boundary ~14) at a large positive x to avoid the 
reflection from the grid boundary. 

To emulate the launching of classical particles from position x and 
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Fig. 5. (a) The scattering times for an ensemble of 500 scattering trajectories that initiate at 
(x, p ) =  (19.994151, -9.627211 x l0 -2) with uniformly distributed phases in the interval 
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P0 = - 0.864665 and initial x located in a small interval centered at x0 = 20.389025 of width 
[pol T =  4.558271 to simulate different relative phases I - n ,  + n ]  between the Morse oscillator 
and the impulsive field, when the field is suddenly turned on. 



198 ku et  al.  

momentum p, we start a Gaussian wave packet with minimal uncertainty 
commensurate with the size of h (a Glauber coherent state), 

r t =  0 )=  C exp poX- ~ /  (13) 

where C =  ( 2 ~ )  1/4, and observe its time evolution. Note that in our 
dimensionless units h is inversely proportional to the number of bound 
states that the Morse potential can support. 

4.1. Time Scales for Spreading of Wave Packets 

The rate of spreading of a localized wave packet in different parts of 
classical phase space can be quite different(~s); this is due to the fact that 
the phase space is mixed with regular and chaotic regions. On the other 
hand, the control mechanism suggested in Section 3 depends on the stable 
structures in the phase space. Those stable islands correspond locally to an 
integrable system, despite the overall nonintegrability, and therefore will 
lead to a wave packet spreading rate typical of integrable systems. It is 
believed that the spreading rate in a regular region is much slower than in 
a chaotic region. To confirm this idea, we use the product ~ZxCrp of the mean 
deviations of x and p to investigate the spreading of the wave packet 
starting inside the near-integrable stable islands. Classically, due to the 
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Fig. 6. The spreading time /sp as function of h where the field parameters are the same as in 

Fig. 4. 
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area-preserving property of Hamiltonian dynamics, the product should 
remain constant for a short duration. Thus the effect of the quantum diffusion 
can be characterized by the time dependence of the product. 

Starting with a wave packet with minimal uncertainties in x and p, 
(13), we define the spreading time rsp as the first time when the smoothed 
product O'xO p exceeds the area of the triangular region (Fig. 4). In Fig. 6 
we present a log-log plot for the spreading time %0 as function of h. 
A linear fit to the curve suggests 

1 
Gp ~ (14) 

in this regular region. 
For regions where the classical dynamics is chaotic, we need a 

quantity which can reflect the stretching and folding properties of the 
classical phase flow. The product a x a  p fails to give any useful clues in this 
respect since it is classically a constant for a short time interval. Instead we 
focus on the spreading o-, along the direction of the classical unstable 
manifold for such a signal; this quantity leads to the quantum equivalent 
of the Lyapunov exponent. 

We start the wave packet at the location of a period-one flip-saddle 
point where the linearized map has eigenvalues 21 = 1/22 = -2.069019 for 
d = 2e 2 and T = 6.8. The flip-saddle results from a period-doubling bifurca- 
tion of the stable period-one center as T increases from 6.05 with the same 
A. Plotting log(r as a function of time for several h ranging from 0.01 to 
0.03, we find in general a linear growth followed by saturation. Typical 
examples are shown in Fig. 7. We call the time at which saturation first 
occurs the saturation time %. In Table I we list the results for the satura- 
tion time and slope :% of the linear rising part. The slope is the quantum 
analog to the classical Lyapunov  exponent ,  which in this case equals 
(I/T) log(1211 )=  0.106922. It is interesting to note that O~q"( s ~ 1, that is, the 
saturation time is ~ 1/c%. 

Table I, h Dependence of the Saturat ion 
Time and oq 

h T s ~q  

0.010 22 0.03520 
0.012 20 0.06137 
0.014 18 0.07271 
0.016 16 0.07798 
0.018 15 0.08465 
0.020 12 0.09241 
0.030 9 0.10510 
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Fig. 7. The spread along the direction of the unstable manifold a~ as a function of time for 
A = 2e 2, T= 6.8, and h = 0.01, 0.012, 0.014, and 0.018, respectively. 

Heller (16) defined a break time as the time to resolve features differing 
in energy by AE which is inversely propor t ional  to the local density of 
states for bound  regions. The saturat ion time introduced above might  also 
be considered as a break time. 

4.2. Enhancement  of  Scatter ing Times 

In  this section we discuss the increase of quan tum scattering time due 
to the stabilized con t inuum in the classical phase space. We use first the 
impulsive field case as an example to illustrate the mechanism and discuss 
the cont inuous  field case latter in this section. 

The first question we address is concerned with the existence of 
"trapping" in the quan tum mechanical  solution. Namely,  we conjecture 
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Fig. 8. Q u a n t u m  time evolution of a wave packet originally centered within the classical 
triangular structure. The RHS figures show a "phase space portrait" in terms of expected 
values. The LHS figures show (a) <x>, (b) spread in x, and (c) energy of the solution for 
various h. 
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that the triangular structure surrounding the period-one orbit will influence 
the quantum solution provided it has an area large enough compared to h. 

To illustrate this point, we launched a Gaussian wave packet within 
the triangular structure. Figure 8 shows the results of such calculations. 
The "quantum trajectories" were obtained by plotting the momentum 
expected value ( p )  versus the position expected value ( x ) .  We recognize 
that the equivalence of the period-one orbit is well reproduced, but that 
eventually the wave packet will spread out, presumably due to dynamical 
tunneling. (2) Quantum mechanics allows for a spreading of the wave 
packet; the left panel of Fig. 8 shows that the widening of the wave packet 
is prevalent and that the diffusion rate is larger for larger h. Thus, these 
results are consistent with the conjecture that quantum results approach 
the classical results as h decreases. 

As stated earlier, the spreading is much faster in the classical chaotic 
region than in the regular region, since both quantum dispersion and 
classical stochasticity are present in the chaotic region. This difference in 
quantum time scale will enhance the possibility of our control mechanism. 
Before turning on the laser field, the classical phase space is regular; after 
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Fig. 9. The lifetime as function of the initial position of the wave packet with 
Po = -0.864665 and h = 0.01. The field is turned on after four optical cycles with the field 
parameters the same as in Fig. 4. The solid line is for the exit probability Pexi t  = 0.6 and the 
dotted line is for P e x i t  = 0.8. The dashed line shows the average results of an ensemble of classi- 
cal trajectories distributed according to the initial quantum wave packet probability profile. 
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switching on the laser field, the system is locally integrable in the resonance 
region, which leads to a spreading rate typical of integrable systems. 
A wave packet  with the right initial condit ions which is caught  by the 
resonance structure will have a spreading, mainly  due to dynamica l  
tunneling out  of the resonance island, much  slower than  the spreading of 
a similar wave packet  with slightly different initial condit ions which might  
end up in the classical chaotic  region after the field is turned on. This 
indicates that  the control  mechan i sm we proposed  earlier ought  to work  
for the q u a n t u m  system as well. 

In Fig. 9 we show the lifetime as function of the initial posi t ion of the 
wave packet.  The field is switched on after four  optical  cycles. The no rm of 
the wave packet  is used as a criterion to define the lifetime, the time for the 
n o r m  to reach Pexit. Two sets of results with Pexit = 0.8 and 0.6 are shown 
in Fig. 9. The  lifetime enhancement  is apparent ;  the wave packets  with the 
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Fig. 10. Quantum time evolution of a wave packet originally centered at the saddle point 
(x,, ps) = (2.647856, 0) and h =0.01. (a) (x )  (solid line), the spread in x (dotted line), and 
the energy for three orbital periods (about 300 optical periods). The field parameters are the 
same as in Fig. 1. (b) A "phase space portrait" in terms of expected values. 
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right initial conditions to be caught by the stable structures have longer 
lifetimes. 

We have found that the enhancement of scattering time is also 
remarkable for the continuous driven case. In Fig. 10 we show a calcula- 
tion of wave packet evolution starting at the classical saddle point 
associated with the homoclinic orbits. The mean values of the position 
and momentum follow the classical homoclinic orbits of the effective 
potential over many (> 500) optical periods. We also plot (x >, O-x, and E 
in Fig. 10 as functions of time. We clearly see that the spreading is very slow. 

5. A V E R A G I N G  OF CLASSICAL OBSERVABLES OVER PHASE 
SPACE D ISTRIBUTION 

The initial Gaussian wave packet has minimal uncertainties over 
x and p given by Gx=%=(h/2) 1/2. To simulate the corresponding 
probability distribution, we launch an ensemble of classical trajectories 
distributed over phase space according to the Husimi density distribution, 

~%.po(X,p;h)=exp( (X--X0)2 (p--p0)2 erZx) 
4o.2 h2 (15) 

of the initial wave packet (13). The averaged observables F(x0, P0; h) can 
be calculated from the classical quantity Fc(x, p) according to 

F(xo, P0; h)= f dx f dp ~o,po(X, p; h) Fc(x, p) (16) 

The width of the Husimi distribution is a function of h; in the classical 
ensemble calculations which follow we will use h as a free parameter to 
monitor the width of the averaging process. 

The averaged scattering time is shown in Fig. 9 for h = 0.01 as a func- 
tion of x0 with Po = -0.864665. The sensitivity of the collision times over 
the initial conditions is smoothed out by the averaging process and the 
resulting width of the lifetime distribution is comparable to that of the 
quantum calculation, also shown in Fig. 9. The peak position of the classi- 
cal calculation is shifted to a higher Xo value than the corresponding quan- 
tum one and the asymmetric shape of the quantum distributions does not 
show in the classical result. These subtle effects need further understanding. 
The sensitive dependence of the scattering time reemerges at lower values 
of h, the width monitoring parameter of the classical ensemble distribution. 
In the limit of small h, ~xo.po(X, p; h) behaves like ~5(X-Xo)~(P-Po), so 
that the average lifetime reduce to %. 



Capture by Stabilized Continuum 205 

6. CONCLUSIONS 

We have discussed in this paper the classical and quantum behavior of 
laser-assisted atom-atom collisions. In the classical approach we have 
observed a mix of regular and chaotic behavior in phase space. Most 
interestingly, we have illustrated that stable structures appear in the field- 
free continuum of the Morse potential under the influence of the laser field. 
These structures could be used to enhance molecular formation by 
switching on the laser field at an appropriate time relative to the collision 
process. We have reported on quantum results which support our classical 
control mechanism. An interesting question concerns the spreading rates of 
wave packets in the regular and chaotic regions. We have studied the 
spread in phase space of Gaussian wave packets of minimum uncertainty 
and found a power law dependence, 1/h, for wave packets originating in 
the classically regular region. In the chaotic regime, on the other hand, 
results reveal an exponential spread in the classical unstable direction 
followed by saturation; the h dependence of the characteristic time in the 
exponential growth and the saturation times have been calculated. 

The quantum results show that the fine structures in the classical 
chaotic scattering region are somewhat smoothed out for larger h. We have 
illustrated this effect via an ensemble calculation over classical trajectories 
using a probability profile based on the phase space distribution corre- 
sponding to a minimum-uncertainty Gaussian wave packet. The width of 
this phase space distribution is characterized by the parameter h. Even 
though the sensitive dependence over initial conditions is somewhat 
smoothed out for large h, it remains very evident for small values of h. 

A recent attempt at understanding the phenomena of trapping and 
quantum localization leads to the concept of a vortex tube (17) in classical 
phase space; it was found that quasienergy states were strongly influenced 
by these structures. This concept might provide a fundamental under- 
standing of the trapping and control mechanism we have discussed in 
the context of molecular scattering. We are currently investigating this 
connection. 
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